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A numerical scheme for ordinary differential equations having time varying
and nonlinear coefficients based on the state transition matrix

Robert E. Bartels

Abstract
A variable order method of integrating initial value ordinary differential equations that is based
on the state transition matrix has been developed. The method has been evaluated for linear time
variant and nonlinear systems of equations. While it is more complex than most other methods, it
produces exact solutions at arbitrary time step size when the time variation of the system can be
modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic
behavior have been computed. Accuracy of the method has been demonstrated by comparison
with an exact solution and with solutions obtained by established methods.

Section 1.0. Introduction. Numerical methods to solve ordinary differential equations
are at a state where efficient and accurate solutions are routine. Accuracy is often
achieved by adapting time step size, which in some applications is inconvenient or
impossible. It may not be possible to adapt time step size when the equations of
dynamics are integrated while coupled to another solver (e.g. computational fluid
dynamics (CFD) code). In other cases an arbitrarily large constant time step size may be
desirable such as when externally supplied data is applied to a system at constant time
intervals.

One approach to address this dilemma has been the construction of numerical schemes
based on classical solutions. An exact numerical scheme based on the state transition
matrix (STM) is an example. One advantage of a scheme based on the STM is that it
offers an exact solution of the system for arbitrary time step size. The ability to compute
at arbitrary time step size is useful, for instance, when coupling a continuous system to a
discretely sampled control system with discrete feed back. The system can be integrated
with absolute accuracy between samples and discrete feed back with one or several steps,
as required to capture the discrete nature of the problem. While numerical methods for
time invariant systems based on the STM have been in use for many years1, only recently
has it been applied to time variant systems.2 The present paper proposes a discrete form
of the STM that has application to any linear time varying (LTV) system, and some
nonlinear time varying (NLTV) systems.

Consider the simple first order differential equation

)()()( tutBxtAx +=& (1)

where 01 ,,,),...,( ttRBRARxxxx NNNN
n

T
N ≥∈∈∈= ×× . Setting the dimension of

the matrix B identical to matrix A is purely for convenience; the results are applicable to a
matrix B of general form. In this paper the classical method of solving differential
equations will be used to construct the numerical solution of equation (1). Between times
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tm and tm + h, where h is time step size, a discrete approximation will be performed using
the solution

∫
+

+Φ++Φ=+
ht

t

mmmmm

m

m

dTTuTBThttxththtx )()(),()(),()( (2)

For any LTV system, the STM between times tm and tm + h is given by the Neumann
series
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This result is called the Peano-Baker formula. Only in special cases, such as when the
matrix A is constant, is this solution equal to the more familiar expression
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In all applications discussed in this paper, a discrete form of equation (3) will be used.
That solution may have some value if an approximation can be found that is efficient,
accurate and robust.

Section 2.0. Approximation of the A(t) matrix for an LTV system. Consider the
discrete analog to the continuous functions above.
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The numerical solution of equation (1) can be obtained by starting with a term by term
polynomial approximation of the matrix A(t)
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for schemes of various order. For instance, one can define the O(∆) scheme where
1−=∆ I . The coefficients in equation (4) are constructed from discrete values of the

terms of matrix A(t), that is ),,( ,
1

,,,
I
lnlnlnilni aacc −= K . These interpolation polynomials

can be easily evaluated since )(tA is known for time steps at least up to tm+h. To

illustrate the use of equation (4), the lna , term of the continuous matrix A(t) can be

approximated by polynomial expressions of orders zero, one and two for ( )h,0∈τ by the
following

O(0) scheme: lnln ca ,1, )( =τ where 0
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In a similar manner, higher order approximations of the matrix A(t) can be constructed
term by term. The accuracy of this scheme is dependent on the accuracy of the
approximation of matrix A(t) since equation (3) is exact. Under certain circumstances a
method based on equation (3) will be an exact numerical scheme.

Section 2.1. Approximation of the STM for an LTV system. Using the results of
section 2.0, an algorithm is constructed to compute successive terms of the Peano-Baker
formula. Since polynomials of order 1−=∆ I are used to approximate the matrix A(t)
term by term, the integration of those expressions over ),( htt mm + can be accomplished

in a straight forward manner. The first two terms are easily found. The computation
begins as follows:
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where 1, =lnδ if n = l and 0, =lnδ otherwise. The superscript i in equations (5a-b) is an

index ranging from 1 to I. In equation (4) the same index i is used as an exponent.
Equations (5 a) and (5 b) compute the sum of the first two terms in the series equation (3)
and provide the start of the STM. The terms 1, )( i

lnσ computed in equation (5a) are the

kernel of a recursion that computes the remaining terms of the STM.

Starting at the double integral (the third term in equation (3)) the following recursive
algorithm computes the remaining integral terms and adds their contribution to the STM.
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Successive terms in the integral series are computed starting at j = 0 with the third term
(second integral). When j = 0, the outer subscript 1)( denotes values computed in

equations (5). When j > 0, the outer subscript 1)( denotes values from the previous
iteration of equations (6). There are a total of J + 3 terms of the Neumann series
computed by this algorithm, combined from both sets of formulae, equations (5) and (6).
For instance if J = 0, the first 3 terms are computed, namely the first two obtained from
the former equations and that with j = 0 from the latter recursive formulae. When
implemented, several indexing details are important. If I = 1, the index p ranging over 1
to (I-1) is computed once for p = 1, and the sequence with index p over (I-1) to (j+1)(I-1)
is computed once for p = 0.

When I = 1, this solution is just the exponential series for a constant matrix (i.e. exp(Ah))
or alternately a zero order approximation of a time varying A(t) matrix. Solution of an
LTV system at this level of approximation corresponds simply to applying the
exponential series of the steady state STM updated at each time step. Furthermore, when
the O(0) scheme is used (I = 1) and J = -1 (i.e. only the first two terms computed), this
algorithm is the explicit backward Euler method. Since this scheme uses as its basis an
exact solution, it possible with enough terms to compute solutions using large time step
sizes, as long as the matrix A(t) is sufficiently well behaved so as to be accurately
approximated by a polynomial expansion. In the cases computed so far, relatively few
terms in the series have been required to achieve very good accuracy.

It would be desirable to obtain a bound on the size of the leading order truncated term
following the last of the J + 3 terms used in the computation. Denote the size of the
leading order truncated term by EJ+3. While it may be possible to obtain EJ+3 for any time
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varying system it is likely to be unduly restrictive if based on the most general form of
the equations above. Rather consider the nL × order linear time invariant (LTI) equation

Llx
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l
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where Lll ,...,1, =λ are the coefficients of a diagonalized system. It has been found

empirically by the author that the largest value of the highest order term in the series
truncation error, using 3+J terms of the series, will have for bound
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where ],...,max[ 1max Lλλλ = . In the examples that follow, the largest magnitude entry

of the matrix A(t) at each time step will be used as an estimate of maxλ . By doing this,

the assumption is that this will result in a sufficiently accurate estimate of the truncation
error. Equation (7) does not of course represent the total error in the scheme, which
would also include the error in the approximation in equation (4).

The solution of the last term in equation (2) is facilitated by the fact that values of the
STM at successive time steps are already available, which can be used to numerically
evaluate the integral term. For constant step size h, write
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where I-1 is the order, mtT −=ς and the vector iĉ has the functional dependence
N

i
NI

mm
I

mmii RcRcc ∈∈= +−+− ˆ,,,,),...,(ˆˆ 2121 ξξξξ K . To illustrate the procedure, the

approximation (equation (8)) can be evaluated for orders zero and one by

O(0) scheme: 1ĉh≈Ι where 0
1ˆ mc ξ=

O(I) scheme: )ˆˆ( 22
1

1 cch +≈Ι where 01
2

0
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This completes development of the method for an LTV system. The next section outlines
modification of the procedure for an NLTV system.

Section 2.3. Approximation of the STM for an NLTV system. Consider now the case
in which
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the construction of these coefficients is a crucial step additional explanation is required.
The nonlinear terms lna ,

~ are again approximated by polynomial expressions. For

example, orders zero and one are given by
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and ( )h,0∈τ . The value of the solution )( htx m + has not yet been computed and

therefore the function 1
,lnf is not yet known. This term is computed by extrapolation, that

is )( 1
,

1
, xff lnln = , where ),,( 101 +−= Ixxgx K is derived from previous solutions. The

rest of the method follows that outlined in the previous section.

Section 3.0. Examples. In this section solutions of LTV and NLTV systems are
computed.

Example 3.1. This example computes the following second order system

1)0(,0)0(,4 === xxxtx &&&
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Figure 1 presents the error in the O(I), O(II), O(III) and O(IV) schemes compared with
the second order implicit Euler method. Convergence to the exact solution is shown as
the order of the approximation of A(t) increases. The O(IV) scheme is exact to machine
accuracy since the time variation of the matrix A(t) is exactly captured with a 4th order
polynomial.

This example illustrates one of the advantages of this method. If the time variation is
sufficiently modeled with the order polynomial used, the method is nearly insensitive to
the size of the time step. Using the O(IV) scheme in this example, any time step size is
permissible since the exact solution is being computed. This aspect will be explored more
fully in the next example.
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Figure 1. Percent error.

Example 3.2. This example computes the response of a pitch/plunge apparatus initially
oscillating as a sinusoid, due to a change in the torsion stiffness to ¼ its original value.
The plunge and initial torsion stiffness are mNK h /1021.1 6×= and 3

1 1068.6 ×=αK

radmN /− . The mass is kgmh 64.26= , the mass pitch moment of inertia is
2

4/ 086.0 mkgI c −= , and the static offset is mkgs −= 378.0α . These values are for an

actual system set up to study transonic flutter.3 The functional variation of the torsion
stiffness is given by

ttttfKfKK ∆+≤≤+−= 1121 )1( ααα

where

])/)(cos[1( 12
1 tttf ∆−−= π

and .sec01.0sec,24.01 =∆= tt The natural frequencies of the plunge and torsion

modes are 205.4 rad/sec and 299.3 rad/sec for 1tt ≤ . The second order system is
diagonalized, resulting in the equation

uBqAq ˆˆ +=&& .

The matrix )(ˆ tA has the values
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The generalized variables 1q and 2q roughly correspond to pitch and plunge. These
equations are written in state variable form and solved using equations (5) and (6) with a
sufficient number of terms adjusted at each time step to ensure 7

3 101 −
+ ×≤JE (see

equation (7)).

Computations are performed with h = 0.0005, 0.001, 0.002, and 0.004 sec (approximately
64 to 8 time steps/pitch cycle). The ensuing results are compared with an integration
using a variable time step size 4th order Runge-Kutta (R-K) scheme with tolerance of

7101 −× . The resulting time traces are shown in Figures 2-11. Figures 2-7 are computed
with zero input, i.e. 021 == uu , but with initial conditions 1)0()0( 21 == qq . Figures 8-

11 are computed with initial conditions ,0)0(1 =q 0)0(2 =q , but with an impulse input

for 2u centered at sec1.=t .

Figure 2 gives an overview of the time history of variable 2q solved with the R-K

method, showing the torsion stiffness change at time sec24.01 =t and continuing
afterwards for about 40 cycles. The R-K solution required an average time step size of

sec0001.0=aveh to achieve the desired error tolerance and about 10000 time steps over

the interval shown.

Figure 3 compares the O(III) scheme solution at sec004.0=h with the R-K simulation.
Even after nearly 50 cycles of oscillation there is no discernable difference in the
solutions. A solution computed with the 2nd order implicit Euler method using

sec002.0=h is compared with the 4th order variable time step R-K solution in Figure 4.
Although the very large phase error of the Euler method for this problem makes that
solution unusable, it does illustrate the difficulty in obtaining accurate solutions over a
very large time span. By contrast, all of the solutions shown using the present scheme are
quite accurate.

The solutions in Figures 5-7 using the O(I) to the O(III) scheme are computed at
successively smaller time step sizes. Figure 5 presents solutions using the O(I) scheme at
successive time step sizes. Figure 6 presents solutions using the O(II) scheme, while
Figure 7 shows solutions using the O(III) scheme, each at successively smaller time step
sizes. Each set of solutions demonstrates the convergence of the present schemes to the
4th order R-K solution as the time step size is decreased. The O(I) solution in Figure 5
converges, albeit slowly. As expected, the solution using the O(III) scheme seen in
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Figure 2. Second mode response to smooth change in torsion stiffness.

Figure 7, converges much more rapidly with time step reduction to the R-K solution than
the solution using the O(I) scheme seen in Figure 5.

The last simulations using the pitch/plunge set up, seen in Figures 8-11, show the
response due to an impulse input. Figure 8 shows the overall solution and the impulse
input that initiates the dynamic response. The discrete impulse input centered at

sec1.0=t is shown in Figure 9 at successive time step sizes. That figure illustrates the
coarseness of the approximation of the impulse at the largest time step. Even at the
largest time step size, at which the impulse is defined by only three time steps, the
relative insensitivity of the O(III) scheme to time step size can be seen in the results of
Figures 10-11.

The last three examples apply the method to NLTV systems.

Example 3.3. The equation

naxdxbtgcxxxx 121221 cos, −−+−== && (10)

is solved. When n = 2 this equation is the Helmholtz oscillator arising in the modeling of
ship capsizing.4 When n = 3 the Duffing oscillator can be modeled, arising in the study of
electronic oscillators5, or structural dynamics in which there is nonlinear stiffness.6 The
parameters are 3,15.0,3.0,1,1 =====−= ndgbac .
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Figure 11. Second mode response to input u2(t).

Solutions of this equation using the O(0) – O(IV) schemes with initial condition
,1)0(1 −=x 1)0(2 =x are in Figure 12 a)-e). The tolerance in the present schemes is set at

7
3 101 −

+ ×≤JE . A solution is also computed with the variable order multi-step solver

ode15s in MATLAB, with tolerance of 7101 −× . The variable order solution takes about
4000 time steps over the interval shown, with an average time step size of 0.012. As the
order of the present scheme is increased, the solution converges to the reference solution:
as shown in Figure 12 e) the O(IV) scheme with h = 0.05 is identical to the reference
solution. However, as shown in Figure 13, with just a slight change in the initial
condition to ,1)0(1 −=x 001.1)0(2 =x the O(IV) scheme with h = 0.05 shows divergence
from the reference solution toward the end of the simulation. Time step reduction to h =
0.01 is required using the O(IV) scheme for complete convergence.

Example 3.4. Equation (10) is solved with values now given by 2
1

2
1 , =−= ac ,

3,1.0,095.0,79.0 ==== ndgb . This is the twin well oscillator with chaotic motion
between attractors.5 For the reference solution, the MATLAB ode15s solver is employed.
Since this case is much more sensitive to numerical error than the last, the tolerance is
now set at 14101 −× . At this level of tolerance, the average time step size is

0005.0=aveh with 600,000 time steps required. This solution and that computed using

the O(V) scheme with h = 0.002, and 12
3 101 −

+ ×≤JE are shown in Figure 14. The O(V)

scheme and the MATLAB solution diverge only slightly and only toward the end of the
simulation.
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Figure 12 a)-e). Numerical solution of the Duffing equation, x(0)=[-1,1.].
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Figure 12. Concluded.
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Figure 13. Numerical solution of the Duffing equation, x(0)=[-1,1.001].
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Figure 14. Numerical solution of the twin well equation, x(0) = [-1,-0.5].



18

Example 3.5. The van der Pol equation

xxxx −−= &&& )1( 2µ

is computed with 10=µ . At this value of µ , the equation is only moderately stiff.
Figure 15 shows the solution in the region t = 6-11 in which a transition in the solution
occurs; before t = 6 the solutions are nearly constant and are identical. The result
obtained from the O(III) scheme, with h = 0.05 and 6

3 101 −
+ ×≤JE , is compared with that

from a variable order multi-step solver (ode15s in MATLAB) with tolerance set at
6101 −× . Slight differences in the solutions appear only in the area in which there are

large solution gradients. The nearly identical results indicate that, at the large time step
used, the present O(III) scheme computes the rapidly changing solution well.
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1
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x

t

MATLAB variable order solver
O(III) scheme, h = 0.05

Figure 15. Numerical solution of the van der Pol equation, µ = 10.

Section 4.0. Conclusions. A variable order method of integrating initial value ordinary
differential equations that is based on the state transition matrix (STM) has been
developed. Although the STM solution formally is valid only for linear equations, the
discrete numerical method can be applied to both linear time variant and to nonlinear
systems of equations. When the time variation of a linear system can be exactly modeled
by a polynomial expansion, the scheme will give an exact result for large time step size.
Accurate solutions in all the cases shown can be achieved for linear time variant systems
at large time step sizes. The type of nonlinear system is limited to those that can be
modeled within a state space frame work, that is, in which the nonlinearity is contained in
the A(t,x), B(t,x) matrix terms. Several nonlinear problems such as the Duffing equation
and twin well attractor, exhibiting chaotic behavior, have also been computed. Higher



19

order solutions of these equations compare well with reference solutions performed with
the standard 4th order Runge-Kutta and variable order methods.

The present method has been developed for integration of modal structural, flight
dynamics and control system equations in conjunction with a computational fluid
dynamics solver, an application for which it is ideally suited. Applications might include
the simulation of structural dynamics with time varying parameters such as stiffness,
mass or geometry, simulation of a fully adaptive control system, or flight dynamics with
variation in flight parameters. Other applications are also being considered. Apart from
its use in a numerical integration scheme, it offers a generalized numerical technique for
the computation of the STM for any time varying linear system, among other possible
applications.
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